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Abstract. A quasisymmetric function is assigned to every double poset (that is, every
finite set endowed with two partial orders) and any weight function on its ground set.
This generalizes well-known objects such as monomial and fundamental quasisymmet-
ric functions, (skew) Schur functions, dual immaculate functions, and quasisymmetric
(P, ω)-partition enumerators. We prove a formula for the antipode of this function
that holds under certain conditions (which are satisfied when the second order of the
double poset is total, but also in some other cases); this restates (in a way that to us
seems more natural) a result by Malvenuto and Reutenauer, but our proof is new and
self-contained. We generalize it further to an even more comprehensive setting, where
a group acts on the double poset by automorphisms.

Keywords: antipodes, double posets, Hopf algebras, posets, P-partitions, quasisym-
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1 Introduction

Double posets and E-partitions (for E a double poset) have been introduced by Claudia
Malvenuto and Christophe Reutenauer [14] in their definition of a “Hopf algebra of
double posets”. We shall employ these same notions to study a formula for the antipode
in the Hopf algebra QSym of quasisymmetric functions due to (the same) Malvenuto
and Reutenauer [13, Theorem 3.1]. We shall restate this formula in a more natural form,
outline a new (and self-contained) proof, and extend it further to a setting in which a
group acts on the double poset. This latter extension, and with it the whole work, owes
its inspiration to Katharina Jochemko’s [10]. This extended abstract surveys the results
in [8] and sketches the main ideas of the proofs. For details, we refer to [8].

2 Notations

We set N = {0, 1, 2, . . .}. A composition means a finite sequence of positive integers. We
let Comp be the set of all compositions. For any composition α = (α1, α2, . . . , αk), set
|α| = α1 + α2 + · · ·+ αk.
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Fix a commutative ring k. We consider the k-algebra k [[x1, x2, x3, . . .]] of formal
power series in infinitely many (commuting) indeterminates x1, x2, x3, . . . over k. A mono-
mial shall always mean a monomial (without coefficients) in the variables x1, x2, x3, . . ..
The algebra k [[x1, x2, x3, . . .]] comes with a topology that provides meaning to certain
infinite sums; see [8, §2] for details. A power series f ∈ k [[x1, x2, x3, . . .]] is said to be
bounded-degree if there exists a d ∈N such that no monomial of degree > d appears in f .

If two monomials m and n have the forms xa1
i1

xa2
i2
· · · xa`

i`
and xa1

j1
xa2

j2
· · · xa`

j`
for two

strictly increasing sequences (i1 < i2 < · · · < i`) and (j1 < j2 < · · · < j`) of positive in-
tegers and one (common) sequence (a1, a2, . . . , a`) of positive integers, then m and n are
said to be pack-equivalent.2 A power series f ∈ k [[x1, x2, x3, . . .]] is said to be quasisym-
metric if every two pack-equivalent monomials have equal coefficients in front of them
in f . The set of quasisymmetric bounded-degree power series in k [[x1, x2, x3, . . .]] is a
k-subalgebra of k [[x1, x2, x3, . . .]], and is known as the k-algebra of quasisymmetric func-
tions over k. It is denoted by QSym. It is clear that the symmetric bounded-degree power
series in k [[x1, x2, x3, . . .]] (commonly known in combinatorics as the symmetric functions)
form a k-subalgebra of QSym. The quasisymmetric functions have a rich theory which
is related to, and often sheds new light on, the classical theory of symmetric functions;
this theory goes back to Gessel [5] and Malvenuto and Reutenauer [12], and expositions
can be found in [17, §§ 7.19, 7.23] and [9, §§5-6] and other sources.

For every composition α = (α1, α2, . . . , α`) ∈ Comp, we set

Mα = ∑
i1<i2<···<i`

xα1
i1

xα2
i2
· · · xα`

i`
= ∑

m is a monomial
pack-equivalent to x

α1
1 xα2

2 ···x
α`
`

m

(where the ik in the first sum are positive integers). Then, (Mα)α∈Comp is known to be a
basis of the k-module QSym; it is known as the monomial basis of QSym.

The k-algebra QSym can be endowed with a structure of a k-coalgebra which, com-
bined with its k-algebra structure, turns it into a Hopf algebra. We refer to the literature
both for the theory of coalgebras and Hopf algebras (see [16], [9, §1], [15, §1-§2], etc.)
and for a deeper study of the Hopf algebra QSym (see, e.g., [9, §5]); we shall need but
the very basics of this structure, and so it is only them that we introduce.

We define a k-linear map ∆ : QSym→ QSym⊗QSym (here and in the following, all
tensor products are over k by default) by requiring that

∆
(

M(α1,α2,...,α`)

)
=

`

∑
k=0

M(α1,α2,...,αk)
⊗M(αk+1,αk+2,...,α`) for every (α1, α2, . . . , α`) ∈ Comp .

(By linearity, this defines ∆ on all of QSym, since (Mα)α∈Comp is a basis of the k-module
QSym.) We further define a k-linear map ε : QSym→ k by requiring that

ε
(

M(α1,α2,...,α`)

)
= δ`,0 for every (α1, α2, . . . , α`) ∈ Comp .

2For instance, x2
2x3x2

4 is pack-equivalent to x2
1x4x2

8 but not to x2x2
3x2

4.
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(Equivalently, ε sends every power series f ∈ QSym to the result f (0, 0, 0, . . .) of sub-
stituting zeroes for the variables x1, x2, x3, . . . in f . The map ∆ can also be described in
such terms, but with greater difficulty [9, (5.3)].) It is well-known that these maps ∆ and
ε satisfy the equalities(

∆⊗ idQSym
)
◦ ∆ =

(
idQSym⊗∆

)
◦ ∆,

(
ε⊗ idQSym

)
◦ ∆ = ι1,

(
idQSym⊗ε

)
◦ ∆ = ι2

(where ι1 : QSym → k⊗QSym and ι2 : QSym → QSym⊗k are the canonical isomor-
phisms), and so (QSym, ∆, ε) is what is commonly called a k-coalgebra. Furthermore, ∆
and ε are k-algebra homomorphisms, which is what makes this k-coalgebra QSym into
a k-bialgebra. Finally, let m : QSym⊗QSym→ QSym be the k-linear map sending every
pure tensor a ⊗ b to ab, and let u : k → QSym be the k-linear map sending 1 ∈ k to
1 ∈ QSym. Then, there exists a unique k-linear map S : QSym→ QSym satisfying

m ◦ (S⊗ id) ◦ ∆ = u ◦ ε = m ◦ (id⊗S) ◦ ∆. (2.1)

This map S is known as the antipode of QSym. It is known to be an involution and an
algebra automorphism of QSym, and its action on the various quasisymmetric functions
defined combinatorially is the main topic of this note. The existence of the antipode S
makes QSym into a Hopf algebra.

3 Double posets

Next, we shall introduce the notion of a double poset, following [14].

Definition 1. (a) We shall encode posets as pairs (P,<), where P is a set and < is a
strict partial order (i.e., an irreflexive, transitive and antisymmetric binary relation)
on the set P; this relation < will be regarded as the smaller relation of the poset.

(b) If < is a strict partial order on a set P, and if a ∈ P and b ∈ P, then we say that
a and b are <-comparable if either a < b or a = b or b < a. A strict partial order
< on a set P is said to be a total order if and only if every two elements of P are
<-comparable.

(c) If < is a strict partial order on a set P, and if a ∈ P and b ∈ P, then we say that a is
<-covered by b if we have a < b and there exists no c ∈ P satisfying a < c < b.

(d) A double poset is defined as a triple (E,<1,<2) where E is a finite set and <1 and
<2 are two strict partial orders on E.

(e) A double poset (E,<1,<2) is said to be special if the relation <2 is a total order.
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(f) A double poset (E,<1,<2) is said to be tertispecial if it satisfies the following con-
dition: If a and b are two elements of E such that a is <1-covered by b, then a and
b are <2-comparable.3

(g) If < is a binary relation on a set P, then the opposite relation of < is defined to be
the binary relation > on the set P defined by the equivalence (e > f )⇐⇒ ( f < e).
Notice that if < is a strict partial order, then so is the opposite relation > of <.

Definition 2. If E = (E,<1,<2) is a double poset, then an E-partition shall mean a map
φ : E→ {1, 2, 3, . . .} such that:

• every e ∈ E and f ∈ E satisfying e <1 f satisfy φ (e) ≤ φ ( f );

• every e ∈ E and f ∈ E satisfying e <1 f and f <2 e satisfy φ (e) < φ ( f ).

Example 3. The notion of an E-partition (which was inspired by the earlier notions of
P-partitions and (P, ω)-partitions as studied by Gessel and Stanley4) generalizes various
well-known combinatorial concepts. For example:

• If <2 is the same order as <1 (or any extension of this order), then E-partitions are
weakly increasing maps from the poset (E,<1) to the totally ordered set {1, 2, 3, . . .}.

• If <2 is the opposite relation of <1 (or any extension of this opposite relation),
then E-partitions are strictly increasing maps from the poset (E,<1) to the totally
ordered set {1, 2, 3, . . .}.

For a more interesting example, let µ = (µ1, µ2, µ3, . . .) and λ = (λ1, λ2, λ3, . . .) be two
partitions such that µ ⊆ λ. (See [9, §2] for the notations we are using here.) The skew
Young diagram Y (λ/µ) is then defined as the set of all (i, j) ∈ {1, 2, 3, . . .}2 satisfying
µi < j ≤ λi. On this set Y (λ/µ), we define two strict partial orders <1 and <2 by

(i, j) <1
(
i′, j′

)
⇐⇒

(
i ≤ i′ and j ≤ j′ and (i, j) 6=

(
i′, j′

))
and

(i, j) <2
(
i′, j′

)
⇐⇒

(
i ≥ i′ and j ≤ j′ and (i, j) 6=

(
i′, j′

))
.

The resulting double poset Y (λ/µ) = (Y (λ/µ) ,<1,<2) has the property that the
Y (λ/µ)-partitions are precisely the semistandard tableaux of shape λ/µ. (Again, see
[9, §2] for the meaning of these words.)

3The notions of a double poset and of a special double poset come from [14]. See [4] for more about
the latter. The notion of a “tertispecial double poset” (in hindsight, “locally special” would be better, but
other authors have already adopted this one) appears to be new and arguably sounds artificial, but is the
most suitable setting for the results below (and appears in nature, beyond the particular case of special
double posets – see Example 3).

4See [6] for the history of these notions, and [5] and [17, §7.19] for some of their theory. Mind that
these sources use different and sometimes incompatible notations – e.g., the P-partitions of [6] differ from
those of [5] by a sign reversal.
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This double poset Y (λ/µ) is not special (in general), but it is tertispecial. Some
authors prefer to use a special double poset instead, which is defined as follows: We
define a total order <h on Y (λ/µ) by

(i, j) <h
(
i′, j′

)
⇐⇒

(
i > i′ or

(
i = i′ and j < j′

))
.

Then, Yh (λ/µ) = (Y (λ/µ) ,<1,<h) is a special double poset, and the Yh (λ/µ)-partitions
are precisely the semistandard tableaux of shape λ/µ.

We now assign a certain formal power series to every double poset:

Definition 4. If E = (E,<1,<2) is a double poset, and w : E → {1, 2, 3, . . .} is a map,
then we define a power series Γ (E, w) ∈ k [[x1, x2, x3, . . .]] by

Γ (E, w) = ∑
π is an E-partition

xπ,w, where xπ,w = ∏
e∈E

xw(e)
π(e).

The following fact is easy to see:

Proposition 5. Let E = (E,<1,<2) be a double poset, and w : E → {1, 2, 3, . . .} be a map.
Then, Γ (E, w) ∈ QSym.

Example 6. Various well-known quasisymmetric functions can be written as Γ (E, w):

(a) If E = (E,<1,<2) is a double poset, and w : E → {1, 2, 3, . . .} is the constant
function sending everything to 1, then Γ (E, w) = ∑

π is an E-partition
xπ, where xπ =

∏
e∈E

xπ(e). We shall denote this power series Γ (E, w) by Γ (E); it is exactly what has

been called Γ (E) in [14, §2.2]. All results proven below for Γ (E, w) can be applied
to Γ (E), yielding simpler (but less general) statements.

(b) If E = {1, 2, . . . , `} for some ` ∈ N, if <1 is the usual total order inherited from
Z, and if <2 is the opposite relation of <1, then the special double poset E =
(E,<1,<2) satisfies Γ (E, w) = Mα, where α is the composition (w (1) , w (2) , . . . ,
w (`)).

(c) Let α = (α1, α2, . . . , α`) be a composition, and set n = |α|. Let D (α) be the set
{α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ α`−1}. Let E be the set {1, 2, . . . , n},
and let <1 be the total order inherited on E from Z. Let <2 be some partial order
on E with the property that (i + 1 <2 i for every i ∈ D (α)) and
(i <2 i + 1 for every i ∈ {1, 2, . . . , n− 1} \ D (α)). (There are several choices for such
an order; in particular, we can find one which is a total order.) Then,

Γ ((E,<1,<2)) = ∑
i1≤i2≤···≤in;

ij<ij+1 whenever j∈D(α)

xi1 xi2 · · · xin = ∑
β is a composition;
|β|=n; D(β)⊇D(α)

Mβ.
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This power series is known as the α-th fundamental quasisymmetric function, usually
called Fα (in [5], [12, §2], [2, §2.4] and [7, §2]) or Lα (in [17, §7.19] or [9, Def. 5.15]).

(d) Let E be one of the two double posets Y (λ/µ) and Yh (λ/µ) defined as in Exam-
ple 3 for two partitions µ and λ. Then, Γ (E) is the skew Schur function sλ/µ.

(e) Similarly, dual immaculate functions as defined in [2, §3.7] can be realized as Γ (E)
for appropriate E (see [7, Proposition 4.4]), which helped the author prove one of
their properties [7]. (The E-partitions here are the so-called immaculate tableaux.)

(f) When the relation <2 of a double poset E = (E,<1,<2) is a total order (i.e., when
the double poset E is special), the E-partitions are precisely the reverse (P, ω)-
partitions (for P = (E,<1) and ω being a labelling of P dictated by <2) in the
terminology of [17, §7.19], and the power series Γ (E) is the KP,ω of [17, §7.19].

4 The antipode theorem

We are now ready for the main results. We first state a theorem and a corollary which
are not new, but will be reproven in a novel and self-contained way.

Theorem 7. Let (E,<1,<2) be a tertispecial double poset. Let w : E → {1, 2, 3, . . .}. Then,
S (Γ ((E,<1,<2) , w)) = (−1)|E| Γ ((E,>1,<2) , w), where >1 denotes the opposite relation of
<1.

Corollary 8. Let (E,<1,<2) be a tertispecial double poset. Then, S (Γ ((E,<1,<2))) =

(−1)|E| Γ ((E,>1,<2)), where >1 denotes the opposite relation of <1.

We shall give examples for consequences of these facts shortly (Example 11), but let us
first explain where they have already appeared. Corollary 8 is equivalent to [9, Corollary
5.27] (a result found by Malvenuto and Reutenauer [13, Lemma 3.2]). Theorem 7 is
equivalent to Malvenuto’s and Reutenauer’s [13, Theorem 3.1].5 We believe that our
versions of these facts are more natural and simpler than the ones appearing in existing
literature (and if not, at least our proofs are).

To these known results, we add another, which seems to be unknown so far (probably
because it is far harder to state in the terminologies of (P, ω)-partitions or equality-and-
inequality conditions appearing in literature). First, we need to introduce some notation:

Definition 9. Let G be a group, and let E be a G-set.

(a) Let < be a strict partial order on E. We say that G preserves the relation < if every
g ∈ G, a ∈ E and b ∈ E satisfying a < b satisfy ga < gb.

5These equivalences are not totally obvious. See [8, §4] for a few more details on them.
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(b) Let w : E→ {1, 2, 3, . . .}. We say that G preserves w if every g ∈ G and e ∈ E satisfy
w (ge) = w (e).

(c) Let g ∈ G. Assume that the set E is finite. We say that g is E-even if the action
of g on E (that is, the permutation of E that sends every e ∈ E to ge) is an even
permutation of E.

(d) If X is any set, then the set XE of all maps E → X becomes a G-set as follows: For
any π ∈ XE and g ∈ G, we let gπ ∈ XE be the map sending each e ∈ E to π

(
g−1e

)
.

(e) Let F be a further G-set. Assume that the set E is finite. An element π ∈ F is said
to be E-coeven if every g ∈ G satisfying gπ = π is E-even. A G-orbit O on F is said
to be E-coeven if all elements of O are E-coeven.6

Theorem 10. Let E = (E,<1,<2) be a tertispecial double poset. Let Par E denote the set of all
E-partitions. Let w : E→ {1, 2, 3, . . .}. Let G be a finite group which acts on E. Assume that G
preserves both relations <1 and <2, and also preserves w. Then, G acts also on the set Par E of
all E-partitions; namely, Par E is a G-subset of the G-set {1, 2, 3, . . .}E (see Definition 9 (d) for
the definition of the latter). For any G-orbit O on Par E, we define a monomial xO,w by

xO,w = xπ,w for some element π of O

(this does not depend on the choice of π). Let

Γ (E, w, G) = ∑
O is a G-orbit on Par E

xO,w

and
Γ+ (E, w, G) = ∑

O is an E-coeven G-orbit on Par E
xO,w.

Then, Γ (E, w, G) and Γ+ (E, w, G) belong to QSym and satisfy

S (Γ (E, w, G)) = (−1)|E| Γ+ ((E,>1,<2) , w, G) .

This theorem, which combines Theorem 7 with the ideas of Pólya enumeration, is
inspired by Jochemko’s reciprocity result for order polynomials [10, Theorem 2.8], which
can be obtained from it by specializations (see [8, §8] for the derivation).

We shall now review a number of particular cases of Theorem 7.

Example 11. (a) Corollary 8 follows from Theorem 7 by letting w be the function which
is constantly 1.

6Equivalently, O is E-coeven if and only if at least one element of O is E-coeven. (This is easy to check.)
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(b) Let α = (α1, α2, . . . , α`) be a composition, let n = |α|, and let E = (E,<1,<2) be the
double poset defined in Example 6 (b). Let w : {1, 2, . . . , `} → {1, 2, 3, . . .} be the
map sending every i to αi. As Example 6 (b) shows, we have Γ (E, w) = Mα. Thus,
applying Theorem 7 to these E and w yields

S (Mα) = (−1)` Γ ((E,>1,<2) , w) = (−1)` ∑
i1≥i2≥···≥i`

xα1
i1

xα2
i2
· · · xα`

i`

= (−1)` ∑
i1≤i2≤···≤i`

xα`
i1

xα`−1
i2
· · · xα1

i`
= (−1)` ∑

γ is a composition; |γ|=n;
D(γ)⊆D((α`,α`−1,...,α1))

Mγ.

This is the formula for S (Mα) given in [3, Proposition 3.4], in [11, (4.26)], in [9, The-
orem 5.11], and in [1, Theorem 4.1] (originally due to Ehrenborg and to Malvenuto
and Reutenauer).

(c) Applying Corollary 8 to the double poset of Example 6 (c) (where the relation
<2 is chosen to be a total order) yields a classical formula for the antipode of a
fundamental quasisymmetric function ([11, (4.27)], [9, (5.9)], [1, Theorem 5.1]).

(d) By applying Corollary 8 to any of the two tertispecial double posets Y (λ/µ) and
Yh (λ/µ) from Example 3, we can obtain the well-known formula S

(
sλ/µ

)
=

(−1)|λ/µ| sλt/µt for the antipode of a skew Schur function (where νt denotes the
conjugate of a partition ν). See, e.g., [8, Example 4.8 (d)] for the details. (This is not
a new argument; it appeared, e.g., in [9, proof of Corollary 5.29] in the language of
P-partitions. It makes use of the fact that the antipode of the symmetric functions
is a restriction of the antipode of QSym.) A more general antipode formula for
“Schur functions with cell weights” (no longer symmetric, at least in general) can
be obtained using Theorem 7.

(e) A result of Benedetti and Sagan [1, Theorem 8.2] on the antipodes of immaculate
functions can be obtained from Corollary 8 using dualization.

5 An outline of the proofs

In preparation for the proofs of the above results, we shall now introduce the notion of
a packed map, and state some simple lemmas. Proofs can be found in [8, §5].

Definition 12. If E is a set and π : E → {1, 2, 3, . . .} is a map, then π is said to be packed
if π (E) = {1, 2, . . . , k} for some k ∈N.

Definition 13. Let E be a set. Let π : E → {1, 2, 3, . . .} be a packed map. Let w : E →
{1, 2, 3, . . .} be a map. Then, a composition evw π is defined as follows: Let ` = |π (E)|.
Set evw π = (α1, α2, . . . , α`), where each αi = ∑

e∈π−1(i)
w (e).
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Proposition 14. Let E = (E,<1,<2) be a double poset. Let w : E → {1, 2, 3, . . .} be a map.
Then,

Γ (E, w) = ∑
ϕ is a packed E-partition

Mevw ϕ. (5.1)

We shall now describe the coproduct of Γ (E, w), following [14, Theorem 2.2].

Definition 15. Let E = (E,<1,<2) be a double poset.

(a) Then, Adm E will mean the set of all pairs (P, Q), where P and Q are subsets of E
satisfying P ∩ Q = ∅ and P ∪ Q = E and having the property that no p ∈ P and
q ∈ Q satisfy q <1 p. These pairs (P, Q) are called the admissible partitions of E.

(b) For any subset T of E, we let E |T denote the double poset (T,<1,<2), where <1
and <2 (by abuse of notation) denote the restrictions of the relations <1 and <2 to
T.

Proposition 16. Let E = (E,<1,<2) be a double poset. Let w : E → {1, 2, 3, . . .} be a map.
Then,

∆ (Γ (E, w)) = ∑
(P,Q)∈Adm E

Γ (E |P, w |P)⊗ Γ
(
E |Q, w |Q

)
. (5.2)

Proof outline for Theorem 7. We shall only demonstrate the cornerstones of this proof. See
[8, §6] for the details.

We use strong induction over |E|. The induction base (|E| = 0) is straightforward.
Now, consider a tertispecial double poset E = (E,<1,<2) with |E| > 0 and a map
w : E → {1, 2, 3, . . .}, and assume that Theorem 7 is proven for all tertispecial double
posets of smaller size.

From |E| > 0, it is easy to see that ε (Γ (E, w)) = 0, so that (u ◦ ε) (Γ (E, w)) = 0.
But (2.1) yields (m ◦ (S⊗ id) ◦ ∆) (Γ (E, w)) = (u ◦ ε) (Γ (E, w)) = 0, so that

0 = (m ◦ (S⊗ id) ◦ ∆) (Γ (E, w)) = m ((S⊗ id) (∆ (Γ (E, w))))

= m

(S⊗ id)

 ∑
(P,Q)∈Adm E

Γ (E |P, w |P)⊗ Γ
(
E |Q, w |Q

) (by (5.2))

= ∑
(P,Q)∈Adm E

S (Γ (E |P, w |P)) Γ
(
E |Q, w |Q

)
. (5.3)

In order to prove Theorem 7, it now suffices to verify

0 = ∑
(P,Q)∈Adm E

(−1)|P| Γ ((P,>1,<2) , w |P) Γ
(
E |Q, w |Q

)
. (5.4)
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Indeed, each addend on the right hand side of (5.3) equals the corresponding addend on
the right hand side of (5.4) except maybe the addend for (P, Q) = (E,∅) (see footnote7).
Therefore, once (5.4) is proven, it will follow that the addends for (P, Q) = (E,∅) are
also equal; but this is precisely the claim S (Γ (E, w)) = (−1)|E| Γ ((E,>1,<2) , w) that
needs to be proven. Hence, proving (5.4) suffices.

Using the definitions of Γ ((P,>1,<2) , w |P) and Γ
(
E |Q, w |Q

)
, we observe that each

(P, Q) ∈ Adm E satisfies

Γ ((P,>1,<2) , w |P) Γ
(
E |Q, w |Q

)
=

 ∑
σ is a (P,>1,<2)-partition

xσ,w|P

 ∑
τ is a (Q,<1,<2)-partition

xτ,w|Q


= ∑

π:E→{1,2,3,...};
π|P is a (P,>1,<2)-partition;
π|Q is a (Q,<1,<2)-partition

xπ,w.

Therefore, in order to prove (5.4), it will be enough to show that for every map π : E →
{1, 2, 3, . . .}, we have

∑
(P,Q)∈Adm E;

π|P is a (P,>1,<2)-partition;
π|Q is a (Q,<1,<2)-partition

(−1)|P| = 0. (5.5)

Hence, let us fix a map π : E → {1, 2, 3, . . .}. Our goal is now to prove (5.5). We
denote by Z the set of all (P, Q) ∈ Adm E such that π |P is a (P,>1,<2)-partition and
π |Q is a (Q,<1,<2)-partition. We are going to define an involution T : Z → Z of the set
Z having the property that, for any (P, Q) ∈ Z, if we write T ((P, Q)) in the form (P′, Q′),
then (−1)|P

′| = − (−1)|P|. Once such an involution T is found, it will clearly partition
the addends on the left hand side of (5.5) into pairs of mutually cancelling addends, and
so (5.5) will follow and we will be done. It thus remains to find T.

The definition of T is simple: Let F be the subset of E consisting of those e ∈ E which
have minimum π (e). Then, F is a nonempty subposet of the poset (E,<2), and hence
has a minimal element f (that is, an element f such that no g ∈ F satisfies g <2 f ). Fix

such an f . Now, the map T sends a (P, Q) ∈ Z to

{
(P ∪ { f } , Q \ { f }) , if f /∈ P;

(P \ { f } , Q ∪ { f }) , if f ∈ P
.

Less simple is the proof that T is well-defined. See [8, §6] for this argument.

We shall be particularly brief about the proof of Theorem 10; the full proof can be
found in [8, §7]. We merely state the two main observations used in the proof:

7Because if (P, Q) 6= (E,∅), then |P| < |E|, and thus the induction hypothesis (applied to the double
poset E |P, which is easily seen to be tertispecial) yields S (Γ (E |P, w |P)) = (−1)|P| Γ ((P,>1,<2) , w |P).
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Proposition 17. Let E = (E,<1,<2) be a tertispecial double poset. Let G be a finite group
which acts on E. Assume that G preserves both relations <1 and <2.

Let g ∈ G. Let Eg be the set of all orbits under the action of g on E. Define a binary relation
<

g
1 on Eg by (

u <
g
1 v
)
⇐⇒ (there exist a ∈ u and b ∈ v with a <1 b) .

Define a binary relation <
g
2 similarly. Set Eg =

(
Eg,<g

1 ,<g
2
)
.

(a) Then, Eg is a tertispecial double poset.

There is a bijection Φ : {π : E→ {1, 2, 3, . . .} | gπ = π} → {π : Eg → {1, 2, 3, . . .}}.
Namely, this bijection Φ sends any map π : E → {1, 2, 3, . . .} satisfying gπ = π to the map
π : Eg → {1, 2, 3, . . .} defined by

π (u) = π (a) for every u ∈ Eg and a ∈ u.

Consider this bijection Φ. Let π : E→ {1, 2, 3, . . .} be a map satisfying gπ = π.

(b) The map π is an E-partition if and only if the map Φ (π) is an Eg-partition.

(c) Let w : E→ {1, 2, 3, . . .} be map. Define a map wg : Eg → {1, 2, 3, . . .} by

wg (u) = ∑
a∈u

w (a) for every u ∈ Eg.

Then, xΦ(π),wg = xπ,w.

Lemma 18. Let G be a finite group. Let F be a G-set. Let O be a G-orbit on F, and let π ∈ O.

(a) We have
1
|O| =

1
|G| ∑

g∈G;
gπ=π

1.

(b) Let E be a further finite G-set. For every g ∈ G, let signE g denote the sign of the
permutation of E that sends every e ∈ E to ge. (Thus, g ∈ G is E-even if and only if

signE g = 1.) Then,


1
|O| , if O is E-coeven;

0, if O is not E-coeven
=

1
|G| ∑

g∈G;
gπ=π

signE g.

Theorem 10 can be derived from Theorem 7 using the above observations and some
standard manipulations of sums, akin to the proof of the Pólya enumeration formula.



12 Darij Grinberg

References

[1] C. Benedetti and B. Sagan. “Antipodes and involutions”. 2016. arXiv:1410.5023v4.

[2] C. Berg, N. Bergeron, F. Saliola, L. Serrano, and M. Zabrocki. “A lift of the Schur and Hall-
Littlewood bases to non-commutative symmetric functions”. Canadian J. Math. 66 (2014),
pp. 525–565. DOI.

[3] R. Ehrenborg. “On posets and Hopf algebras”. Adv. Math. 119 (1996), pp. 1–25. DOI.

[4] L. Foissy. “Plane posets, special posets, and permutations”. Adv. Math. 240 (2013), pp. 24–
60. DOI.

[5] I. M. Gessel. “Multipartite P-partitions and inner products of skew Schur functions”. Com-
binatorics and Algebra. Contemp. Math., Vol. 34. Amer. Math. Soc., 1984, pp. 289–301. DOI.

[6] I. M. Gessel. “A historical survey of P-partitions”. 2015. arXiv:1506.03508v1.

[7] D. Grinberg. “Dual immaculate creation operators and a dendriform algebra structure on
the quasisymmetric functions”. 2016. arXiv:1410.0079v6.

[8] D. Grinberg. “Double posets and the antipode of QSym”. Electron. J. Combin. 24.2 (2017),
Art. #P2.22. URL.

[9] D. Grinberg and V. Reiner. “Hopf algebras in combinatorics”. 2016. arXiv:1409.8356v4.

[10] K. Jochemko. “Order polynomials and Pólya’s enumeration theorem”. Electron. J. Combin.
21 (2014), Art. P2.52. URL.

[11] C. Malvenuto. “Produits et coproduits des fonctions quasi-symétriques et de l’algèbre des
descentes”. PhD thesis. Université du Québec à Montréal, 1993. URL.

[12] C. Malvenuto and C. Reutenauer. “Duality between quasi-symmetric functions and the
Solomon descent algebra”. J. Algebra 177 (1995), pp. 967–982. DOI.

[13] C. Malvenuto and C. Reutenauer. “Plethysm and conjugation of quasi-symmetric func-
tions”. Discrete Math. 193 (1998), pp. 225–233. DOI.

[14] C. Malvenuto and C. Reutenauer. “A self paired Hopf algebra on double posets and a
Littlewood-Richardson rule”. J. Combin. Theory Ser. A 118 (2011), pp. 1322–1333. DOI.

[15] D. Manchon. “Hopf algebras, from basics to applications to renormalization”. 2006.
arXiv:math/0408405v2.

[16] S. Montgomery. Hopf Algebras and Their Actions on Rings. CBMS Regional Conference Series
in Mathematics, Vol. 82. Amer. Math. Soc., 1993.

[17] R. P. Stanley. Enumerative Combinatorics. Vol. 2. Cambridge University Press, 1999.

https://arxiv.org/abs/1410.5023v4
https://doi.org/10.4153/CJM-2013-013-0
https://doi.org/10.1006/aima.1996.0026
https://doi.org/10.1016/j.aim.2013.03.007
https://doi.org/10.1090/conm/034
https://arxiv.org/abs/1506.03508v1
https://arxiv.org/abs/1410.0079v6
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i2p22
https://arxiv.org/abs/1409.8356v4
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i2p52
http://www1.mat.uniroma1.it/people/malvenuto/Thesis.pdf
https://doi.org/10.1006/jabr.1995.1336
https://doi.org/10.1016/s0012-365x(98)00142-3
https://doi.org/10.1016/j.jcta.2010.10.010
https://arxiv.org/abs/math/0408405v2

	Introduction
	Notations
	Double posets
	The antipode theorem
	An outline of the proofs

